
 

          
 
 

euspen’s 21st International Conference & 
Exhibition, Copenhagen, DK, June 2021 

www.euspen.eu  

Robotic limb gait-tracking using deep-q-network 
 
Eric J. Tzeng1, S. C. Chen1, J. L. Chen1, A. E. Roche2, J. L. Chen1 

  
1Department of Mechanical Engineering of Chung-Hsing University in Taichung, Taiwan 
2Independent Researcher admitted to the Master program in Mechatronics at New York University in New York City, New York   
 
jlchen@nchu.edu.tw 

  
Abstract 
In the current landscape of robotic limb control for biped and quadruped robots, inverse kinematics and other mathematical methods 
are used to model the position and torque of the limb. However, due to the complexity of their parameters, inverse kinematic models 
can result in infinite solutions unless constraints are set. Moreover, force and torque models are required to ensure the multiped 
robot can maintain stability during operation. This paper explores the adoption of the reinforcement learning technique, Deep Q 
Network (DQN). The model-free condition of DQN allows the model to learn the gait without the constraints that are required in the 
inverse kinematic model. Under the DQN model, the robot limb is able to successfully complete a steady cycloid gait within 3 600 
cycles. When faced with a randomly generated obstacle, the robot limb under the DQN model is still able to successfully complete 
the cycloid gait cycles using a raw model. Furthermore, this method shows substantial torque optimization under a given reward 
function with different load conditions. The model allows additional reward constraints.  
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1. Introduction   

In the general case, to control a biped or quadruped robot, 
geometric-based forward kinematics, inverse kinematics, and 
other mathematical methods have been used to build control 
systems to execute gait-tracking. For real world implementation, 
it requires dynamic torque/force modeling to ensure the robot 
operates with minimal interference. Unfortunately, this 
modeling process is complex and time comsuming. 

In recent years, the development of computer technology has 
substantially increased the efficiency of machine learning in its 
implementation in robotics. Reinforcement Learning is a popular 
Deep Learning technique that is frequently used in academia 
and industry and has recently been used to explore robotic limb 
control. 

One feature of Reinforcement Learning (RL) that makes the 
method appealing is its ability to be used in the model-free case 
where a complete model is not required for implementation [1]. 
RL can exploit the full solution space depending on the reward 
function and reward factors used. An optimal control policy can 
be achieved through prioritizing each of these functional 
requirements. 

A classic and well-known method of Reinforcement Learning 
is the Q-table algorithm, one of the methods of Q-learning. It 
calculates the cumulative rewards for every action and state the 
agent can take in an environment. This particular algorithm is 
fairly intuitive for simple taks and easily adaptable to other 
algorithms. In the case of robotic limb control, the  vast number 
of combinations of states and actions in this scenario makes Q-
tables too simplisitic. However, Deep-Q-Network(DQN)[2] 
combines neural networks and Q-learning to overcome this 
limitation and achieve complex tasks like gait-tracking. 

 
 
 

2. Model design 

2.1. Robot Limb Model  
The limb model used in this paper is shown in Figure 1. The 

model is composed of three motors as active joints and three 
links. The error of distance is the distance between the linkage 
endpoint and target gait point. The state definition is dependent 
on the difference in radius and the difference in angle. Since 
each target point of the endpoint has an infinite amount of 
solutions, without RL, the mathematical representation of the 
model can become very complex when given constraints. This 
situation provides the possibility for the DQN learning system to 
search for the optimal solution. 

 
Figure 1. This is the basic training setup of the environment where J1, J2, 
and J3 represent the three linkage joints.  
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2.2. Simulation System 

The first goal is to verify that the presented method can do 
gait-tracking which can be achieved through the construction of 
a simple simulator with a basic environment. The environment 
contains the forward kinematic model and dynamic force 
analysis functions to generate different properties such as 
position, velocity, acceleration and torque at each time step. 
These values describe the current condition of the simulated 
limb model, which can be evaluated by reward functions to 
quantify the policy’s performance. The static and dynamic force 
of the limb model is also analysed and put into a physics engine 
to observe simulated torque. The simulated model also takes 
external force into consideration for a more realistic simulation.  

3. Training setup      

3.1. State, Action definition  
The following five elements define the state: 

i. Error of angle (𝐸𝐸𝑡𝑡𝜃𝜃): The absolute angle between end 
point and target point. 

ii. Error of radius (𝐸𝐸𝑡𝑡𝑟𝑟): Distance between end point and 
target point. 

iii. Absolute angle of motor 1 (𝜃𝜃𝑡𝑡
𝐽𝐽1) 

iv. Absolute angle of motor 2 (𝜃𝜃𝑡𝑡
𝐽𝐽2) 

v. Absolute angle of motor 3 (𝜃𝜃𝑡𝑡
𝐽𝐽3) 

The action is defined by the velocity command for each motor 
(joint 1 (𝜔𝜔𝐽𝐽1), joint 2 (𝜔𝜔𝐽𝐽2), joint 3 (𝜔𝜔𝐽𝐽3)) 

 
3.2. Reward definition  

 Five reward values are:  
i. Reach Target: If the distance of the endpoint and target 

gait point is smaller than a certain value, give a positive 
reward. 

ii. Target radius error: If the distance of the endpoint and 
target gait point is going down, give a positive reward. 

iii. Step Increase: To ensure the endpoint reaches the target 
gait point in an efficient way, give a small punishment 
(negative reward) for each iteration of the learning 
process. 

iv. Fail: If there is interference with the robot limb, the 
distance of the endpoint of robot limb and target gait is 
too large, or the robot limb hits an obstacle, the largest 
punishment is given and the agent enters the terminal 
state. 

v. Torque difference of each motor: Loading a single motor 
significantly more than the others is not desired for 
torque balance. A small reward is given if the motor 
torque difference decreases. 

 
3.3. Gait design 

The designed gait shown in Figure 2 will be split into multiple 
points and inputted into the learning algorithm one by one. If 
limb model interference happens or the endpoint is too far from 
the target gait point, then the limb is reset to the first point of 
the gait. 

        
Figure 2. The designed gait for training. The left one is the normal cycloid 
gait; The right one is normal cycloid gait with a randomly generated 
obstacle. 

 
 

3.4. Deep Q Network training process 
  The processdure of the training process is shown in 
Processdure 1. It also shows the interaction between state-
action and Deep Q Network algorithm. 
Processdure 1. Deep Q Network for gait tracking 
Initialize policy network parameters ϑ. 
Initialize target network parameters 𝜗𝜗−1 ← ϑ. 
Initialize learning memory. 
Initialize counter C ← 0 
Initialize simulated robot model. 
Choose target gait. 
Repeat 
>Get the next target gait point, and state 
    Repeat 
        >Epslon greedy decide to get action from policy network or 

random action. 
        >Interprete action as robot model command 
        >Get new state and reward. 
        >Store state, action, reward, new state as transition and  

put into learning memory. 
>Sample one mini batch with size N from learning memory 
and calculate gradient by 

𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 = γ(𝑟𝑟 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑡𝑡+1;𝜗𝜗−1)) − 𝑚𝑚(𝑠𝑠𝑡𝑡, 𝑚𝑚; 𝜗𝜗) 
        >Update state ← new state 
        >if remainder(C/𝐼𝐼𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡) == 0 then update target network  

parameters 𝜗𝜗−1 ← ϑ 
>end if 
>if to next target then break 
>end if 

Until terminate singal triggered. 
 

4. Experiment result     

4.1. Cycloid gait 
A simple cycloid gait on a flat terrain determines if the trained 

DQN policy can solve the inverse kinematics of the robot foot 
and follow the predefined gait trajectory (the light grey cycloid 
line). This will prove the state definition and reward function are 
suitable for the model. In Figure 3, the limb model is strictly 
following the gait trajectory. The left side shows the trajectory 
of the predefined gait and the initial posture of the limb model. 
The right side shows how the limb model is moving in the global 
coordinate aspect.  

 

 
Figure 3. Two cycles of the training results for a cycloid gait on flat 
terrain. 

4.2. Cycloid gait with random ramp obstacle. 
   The random ramped gait adds supplementary information to 
the environment of the robot limb. In this training scenario, the 
environment will generate a ramped terrain, 10 cm in width 
and 3 cm in height, in an arbitrary time and position. The 
modified gait will adapt its gait trajectory depending on the 
environment. 
   The model can easily be implemented in a realtime-generated 
gait trajectory because the state definition is independent of 



  
gait definition. In Figure 4, the model’s endpoint makes contact 
with the ramp and moves forward. In the case where the 
model does not accomplish moving forward, it will overfit and 
remain in a fixed gait trajectory that will fail to follow all gait 
points.  
 

 
Figure 4. Two cycles of the training results for a cycloid gait with a 
random ramp obstacle. On the right, the gait commences from the 
ground for the first gait cycle, then steps on the ramp obstacle in the 
second cycle. The left shows the model’s capability of following the 
dynamic gait. 

4.3. Torque balance optimization 
Using a DQN model allows the possibility of including 

additional requirements to the control system that would 
otherwise mathematically overwhelm other robotic limb 
control systems.  

Figure 5 exhibits the torque distribution history of the cycloid 
gait with and without a torque reward. The comparison 
between the model with torque reward and the model with no 
torque reward shows a significant reduction in the torque 
difference between the middle motor and lower motor. 

 

 
From a visual standpoint, there is less fluctuation in the 

torque of the upper motor when the robot limb is airborne 
under the reward function. The middle and upper motor 
achieve closer values in torque as well. Figure 5 also exhibits a 
small increase in torque for the middle motor when the model 
includes a torque reward.  

The distribution in the average torque difference in raw data 
can be observed in Table 1. The optimization can achieve up to 
10 percent improvement under 3Kg to 7Kg external loading 
applied. The inclusion of torque rewards exhibits the model’s 
ability to change its behaviour according to the additional 
reward function without failing its original gait-tracking task.   

Table 1. Detail average torque difference in different conditions. 

 
4.4. Real robot limb implementation. 
  After training the model in simulation. The model was apply to 
the real robot limb and make it track the same cycloid gait in 
simulaiton. The result is shown in Figure 6. From Figure 6, the 
robot limb can track the desire cycloid gait, this shows that  
trained model can be applied in real world. The video record of 
real robot implementation is mentioned in reference[3].  

 
Figure 5  The result of real robot implementation, from No.1 to No.8 are 
the gait tracking process history. 

 
4.5. Video record of cycloid gait, extra gait experimentation. 

To further investigate the effect of reward design, the same 
model was applied to different gaits and randomized obstacles. 
The trained model achieved the gait tracking successfully as 
predicted in the simulated model. Video links of the various 
scenarios tested are provided in the references[4-9]. 
 

 

Loading/kg Average 
torque 
difference 
without 
torque 
difference 
reward/N-m 

Average 
torque 
difference 
with torque 
difference 
reward/N-m 

Optimization 
rate 
percentage 

3 1.7443 1.5692 10 % 

4 2.4338 2.2146 9 % 

7 4.5181 4.0751 10% 

Figure 6. Comparison of torque distribution with (top) and 
without(bottom) torque balance reward. In both graphs, the lower 
motor exhibits no visible change in behavior when a torque reward 
is imposed. However, the upper motor shows red fluctuations in 
value with the torque balance reward.  



  
5. Conclusion     

In this paper, a control model was successfully constructed to 
achieve stable gait-tracking using DQN model training instead of 
the geometric-based inverse kinematic model. The model can be 
trained into a stabilized state in 3600 cycles of gait execution, 
successfully tracking the gait points and optimizing torque 
performance simultaneously.  

At the phase of model execution, it can achieve gait-tracking 
accuracy up to 1 mm and has shown an observable decrease in 
joint-wise torque optimization up to 17% in various loading 
conditions. In the result of random ramped simulations, it shows 
that this model is not only capable of tracking static finite gait 
points but also realtime-generated gait points, which proves the 
robustness of the trained model. Due to the methodology of 
reinforcement learning, a DQN model can encounter overfitting 
issues. In the context of a robotic foot following a gait, an overfit 
model will learn to follow a predetermined trajectory. However, 
incorporating an obstacle shows the model can adopt real-time 
adjustments to its gait. 

This paper demonstrates the potential of using reinforcement 
learning techniques such as DQN to simplify the inverse 
kinematic modelling process, and achieve multiple targets by 
reward design. Such technique can be used in multi-linkage 
robot control policies for fitting multiple function requirements 
without complex mathematical derivation.  
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