

euspen’s 21st International Conference &
Exhibition, Copenhagen, DK, June 2021

www.euspen.eu

Robotic limb gait-tracking using deep-q-network

Eric J. Tzeng1, S. C. Chen1, J. L. Chen1, A. E. Roche2, J. L. Chen1

1Department of Mechanical Engineering of Chung-Hsing University in Taichung, Taiwan
2Independent Researcher admitted to the Master program in Mechatronics at New York University in New York City, New York

jlchen@nchu.edu.tw

Abstract
In the current landscape of robotic limb control for biped and quadruped robots, inverse kinematics and other mathematical methods
are used to model the position and torque of the limb. However, due to the complexity of their parameters, inverse kinematic models
can result in infinite solutions unless constraints are set. Moreover, force and torque models are required to ensure the multiped
robot can maintain stability during operation. This paper explores the adoption of the reinforcement learning technique, Deep Q
Network (DQN). The model-free condition of DQN allows the model to learn the gait without the constraints that are required in the
inverse kinematic model. Under the DQN model, the robot limb is able to successfully complete a steady cycloid gait within 3 600
cycles. When faced with a randomly generated obstacle, the robot limb under the DQN model is still able to successfully complete
the cycloid gait cycles using a raw model. Furthermore, this method shows substantial torque optimization under a given reward
function with different load conditions. The model allows additional reward constraints.

Keywords: Deep-Q-Network, gait-tracking, robotics , control, machine learning.

1. Introduction

In the general case, to control a biped or quadruped robot,
geometric-based forward kinematics, inverse kinematics, and
other mathematical methods have been used to build control
systems to execute gait-tracking. For real world implementation,
it requires dynamic torque/force modeling to ensure the robot
operates with minimal interference. Unfortunately, this
modeling process is complex and time comsuming.

In recent years, the development of computer technology has
substantially increased the efficiency of machine learning in its
implementation in robotics. Reinforcement Learning is a popular
Deep Learning technique that is frequently used in academia
and industry and has recently been used to explore robotic limb
control.

One feature of Reinforcement Learning (RL) that makes the
method appealing is its ability to be used in the model-free case
where a complete model is not required for implementation [1].
RL can exploit the full solution space depending on the reward
function and reward factors used. An optimal control policy can
be achieved through prioritizing each of these functional
requirements.

A classic and well-known method of Reinforcement Learning
is the Q-table algorithm, one of the methods of Q-learning. It
calculates the cumulative rewards for every action and state the
agent can take in an environment. This particular algorithm is
fairly intuitive for simple taks and easily adaptable to other
algorithms. In the case of robotic limb control, the vast number
of combinations of states and actions in this scenario makes Q-
tables too simplisitic. However, Deep-Q-Network(DQN)[2]
combines neural networks and Q-learning to overcome this
limitation and achieve complex tasks like gait-tracking.

2. Model design

2.1. Robot Limb Model
The limb model used in this paper is shown in Figure 1. The

model is composed of three motors as active joints and three
links. The error of distance is the distance between the linkage
endpoint and target gait point. The state definition is dependent
on the difference in radius and the difference in angle. Since
each target point of the endpoint has an infinite amount of
solutions, without RL, the mathematical representation of the
model can become very complex when given constraints. This
situation provides the possibility for the DQN learning system to
search for the optimal solution.

Figure 1. This is the basic training setup of the environment where J1, J2,
and J3 represent the three linkage joints.

http://www.euspen.eu/

2.2. Simulation System

The first goal is to verify that the presented method can do
gait-tracking which can be achieved through the construction of
a simple simulator with a basic environment. The environment
contains the forward kinematic model and dynamic force
analysis functions to generate different properties such as
position, velocity, acceleration and torque at each time step.
These values describe the current condition of the simulated
limb model, which can be evaluated by reward functions to
quantify the policy’s performance. The static and dynamic force
of the limb model is also analysed and put into a physics engine
to observe simulated torque. The simulated model also takes
external force into consideration for a more realistic simulation.

3. Training setup

3.1. State, Action definition
The following five elements define the state:

i. Error of angle (𝐸𝐸𝑡𝑡𝜃𝜃): The absolute angle between end
point and target point.

ii. Error of radius (𝐸𝐸𝑡𝑡𝑟𝑟): Distance between end point and
target point.

iii. Absolute angle of motor 1 (𝜃𝜃𝑡𝑡
𝐽𝐽1)

iv. Absolute angle of motor 2 (𝜃𝜃𝑡𝑡
𝐽𝐽2)

v. Absolute angle of motor 3 (𝜃𝜃𝑡𝑡
𝐽𝐽3)

The action is defined by the velocity command for each motor
(joint 1 (𝜔𝜔𝐽𝐽1), joint 2 (𝜔𝜔𝐽𝐽2), joint 3 (𝜔𝜔𝐽𝐽3))

3.2. Reward definition

 Five reward values are:
i. Reach Target: If the distance of the endpoint and target

gait point is smaller than a certain value, give a positive
reward.

ii. Target radius error: If the distance of the endpoint and
target gait point is going down, give a positive reward.

iii. Step Increase: To ensure the endpoint reaches the target
gait point in an efficient way, give a small punishment
(negative reward) for each iteration of the learning
process.

iv. Fail: If there is interference with the robot limb, the
distance of the endpoint of robot limb and target gait is
too large, or the robot limb hits an obstacle, the largest
punishment is given and the agent enters the terminal
state.

v. Torque difference of each motor: Loading a single motor
significantly more than the others is not desired for
torque balance. A small reward is given if the motor
torque difference decreases.

3.3. Gait design

The designed gait shown in Figure 2 will be split into multiple
points and inputted into the learning algorithm one by one. If
limb model interference happens or the endpoint is too far from
the target gait point, then the limb is reset to the first point of
the gait.

Figure 2. The designed gait for training. The left one is the normal cycloid
gait; The right one is normal cycloid gait with a randomly generated
obstacle.

3.4. Deep Q Network training process
 The processdure of the training process is shown in
Processdure 1. It also shows the interaction between state-
action and Deep Q Network algorithm.
Processdure 1. Deep Q Network for gait tracking
Initialize policy network parameters ϑ.
Initialize target network parameters 𝜗𝜗−1 ← ϑ.
Initialize learning memory.
Initialize counter C ← 0
Initialize simulated robot model.
Choose target gait.
Repeat
>Get the next target gait point, and state
 Repeat
 >Epslon greedy decide to get action from policy network or

random action.
 >Interprete action as robot model command
 >Get new state and reward.
 >Store state, action, reward, new state as transition and

put into learning memory.
>Sample one mini batch with size N from learning memory
and calculate gradient by

𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 = γ(𝑟𝑟 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑡𝑡+1;𝜗𝜗−1)) − 𝑚𝑚(𝑠𝑠𝑡𝑡, 𝑚𝑚; 𝜗𝜗)
 >Update state ← new state
 >if remainder(C/𝐼𝐼𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡) == 0 then update target network

parameters 𝜗𝜗−1 ← ϑ
>end if
>if to next target then break
>end if

Until terminate singal triggered.

4. Experiment result

4.1. Cycloid gait
A simple cycloid gait on a flat terrain determines if the trained

DQN policy can solve the inverse kinematics of the robot foot
and follow the predefined gait trajectory (the light grey cycloid
line). This will prove the state definition and reward function are
suitable for the model. In Figure 3, the limb model is strictly
following the gait trajectory. The left side shows the trajectory
of the predefined gait and the initial posture of the limb model.
The right side shows how the limb model is moving in the global
coordinate aspect.

Figure 3. Two cycles of the training results for a cycloid gait on flat
terrain.

4.2. Cycloid gait with random ramp obstacle.
 The random ramped gait adds supplementary information to
the environment of the robot limb. In this training scenario, the
environment will generate a ramped terrain, 10 cm in width
and 3 cm in height, in an arbitrary time and position. The
modified gait will adapt its gait trajectory depending on the
environment.
 The model can easily be implemented in a realtime-generated
gait trajectory because the state definition is independent of

gait definition. In Figure 4, the model’s endpoint makes contact
with the ramp and moves forward. In the case where the
model does not accomplish moving forward, it will overfit and
remain in a fixed gait trajectory that will fail to follow all gait
points.

Figure 4. Two cycles of the training results for a cycloid gait with a
random ramp obstacle. On the right, the gait commences from the
ground for the first gait cycle, then steps on the ramp obstacle in the
second cycle. The left shows the model’s capability of following the
dynamic gait.

4.3. Torque balance optimization
Using a DQN model allows the possibility of including

additional requirements to the control system that would
otherwise mathematically overwhelm other robotic limb
control systems.

Figure 5 exhibits the torque distribution history of the cycloid
gait with and without a torque reward. The comparison
between the model with torque reward and the model with no
torque reward shows a significant reduction in the torque
difference between the middle motor and lower motor.

From a visual standpoint, there is less fluctuation in the

torque of the upper motor when the robot limb is airborne
under the reward function. The middle and upper motor
achieve closer values in torque as well. Figure 5 also exhibits a
small increase in torque for the middle motor when the model
includes a torque reward.

The distribution in the average torque difference in raw data
can be observed in Table 1. The optimization can achieve up to
10 percent improvement under 3Kg to 7Kg external loading
applied. The inclusion of torque rewards exhibits the model’s
ability to change its behaviour according to the additional
reward function without failing its original gait-tracking task.

Table 1. Detail average torque difference in different conditions.

4.4. Real robot limb implementation.
 After training the model in simulation. The model was apply to
the real robot limb and make it track the same cycloid gait in
simulaiton. The result is shown in Figure 6. From Figure 6, the
robot limb can track the desire cycloid gait, this shows that
trained model can be applied in real world. The video record of
real robot implementation is mentioned in reference[3].

Figure 5 The result of real robot implementation, from No.1 to No.8 are
the gait tracking process history.

4.5. Video record of cycloid gait, extra gait experimentation.

To further investigate the effect of reward design, the same
model was applied to different gaits and randomized obstacles.
The trained model achieved the gait tracking successfully as
predicted in the simulated model. Video links of the various
scenarios tested are provided in the references[4-9].

Loading/kg Average
torque
difference
without
torque
difference
reward/N-m

Average
torque
difference
with torque
difference
reward/N-m

Optimization
rate
percentage

3 1.7443 1.5692 10 %

4 2.4338 2.2146 9 %

7 4.5181 4.0751 10%

Figure 6. Comparison of torque distribution with (top) and
without(bottom) torque balance reward. In both graphs, the lower
motor exhibits no visible change in behavior when a torque reward
is imposed. However, the upper motor shows red fluctuations in
value with the torque balance reward.

5. Conclusion

In this paper, a control model was successfully constructed to
achieve stable gait-tracking using DQN model training instead of
the geometric-based inverse kinematic model. The model can be
trained into a stabilized state in 3600 cycles of gait execution,
successfully tracking the gait points and optimizing torque
performance simultaneously.

At the phase of model execution, it can achieve gait-tracking
accuracy up to 1 mm and has shown an observable decrease in
joint-wise torque optimization up to 17% in various loading
conditions. In the result of random ramped simulations, it shows
that this model is not only capable of tracking static finite gait
points but also realtime-generated gait points, which proves the
robustness of the trained model. Due to the methodology of
reinforcement learning, a DQN model can encounter overfitting
issues. In the context of a robotic foot following a gait, an overfit
model will learn to follow a predetermined trajectory. However,
incorporating an obstacle shows the model can adopt real-time
adjustments to its gait.

This paper demonstrates the potential of using reinforcement
learning techniques such as DQN to simplify the inverse
kinematic modelling process, and achieve multiple targets by
reward design. Such technique can be used in multi-linkage
robot control policies for fitting multiple function requirements
without complex mathematical derivation.

Acknowledge
 We thank to National Center for High-performance
Computing (NCHC) for providing computational and storage
resources.

References
[1] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An

introduction. MIT press. p22.
[2] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,

Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control
through deep reinforcement learning. nature, 518(7540), 529-
533.

[1] Chen, S C. “Robotic limb gait-tracking using deep-q-network:
Real robot leg implementation.” YouTube, YouTube, 29 Oct.
2020, https://www.youtube.com/watch?v=Re-sKyV8oxc

[2] Chen, S C. “Robotic limb gait-tracking using deep-q-network:
Cycloid gait tracking.” YouTube, Youtube, 29 Oct. 2020,
https://youtu.be/4Ean3-Scw6E.

[3] Chen, S C. “Robotic limb gait-tracking using deep-q-network:
Variational Cycloid gait with random ramp ground.” YouTube,
YouTube, 29 Oct. 2020, https://www.youtube.com/watch?v=-
M0E8V_FQj8.

[4] Chen, S C. “Robotic limb gait-tracking using deep-q-network:
Straight line gait tracking.” YouTube, YouTube, 29 Oct. 2020,
https://www.youtube.com/watch?v=yY56sAFnmhE.

[5] Chen, S C. “Robotic limb gait-tracking using deep-q-network:
Straight line gait tracking with an obstacle..” YouTube, YouTube,
29 Oct. 2020, https://www.youtube.com/watch?v=7RoSvj8fjAY.

[6] Chen, S C. “Robotic limb gait-tracking using deep-q-network:
Online training.” YouTube, YouTube, 29 Oct. 2020,
www.youtube.com/watch?v=Vmk7U4cMfvc.

https://www.youtube.com/watch?v=Re-sKyV8oxc
https://youtu.be/4Ean3-Scw6E
https://www.youtube.com/watch?v=-M0E8V_FQj8
https://www.youtube.com/watch?v=-M0E8V_FQj8
https://www.youtube.com/watch?v=yY56sAFnmhE
https://www.youtube.com/watch?v=7RoSvj8fjAY
https://www.youtube.com/watch?v=Eh-n13U-8FE

	1. Introduction
	2. Model design
	3. Training setup
	4. Experiment result
	5. Conclusion

